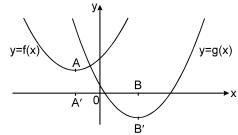


DPP No. 15

Total Marks : 22

Max. Time : 23 min.

Topic : Quadratic Equation


Type of Questions

Comprehension (no negative marking) Q.1 to Q.3 Single choice Objective (no negative marking) Q.4,5,6 Subjective Questions (no negative marking) Q.7

	М.М.,	Min.
(3 marks, 3 min.)	[9,	9]
(3 marks, 3 min.)	[9,	9]
(4 marks, 5 min.)	[4,	5]

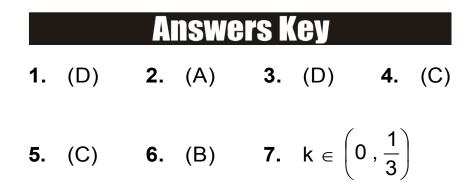
COMPREHENSION (For Q.No. 1 to 3)

Let $f(x) = x^2 + 2ax + b$, $g(x) = cx^2 + 2dx + 1$ be quadratic expressions whose graph is as shown in the figure

Here it is given that |AA'| = |BB'| and |OA'| = |OB|.

- 1. Which of the following statements is correct (A) $a^2 + d = d^2 + c$ (B) a + d = b + c (C) $a^2 + d^2 = c + b$ (D) $bc + c = a^2c + d^2$
- **2.** Sum of roots of equations f(x) = 0 and g(x) = 0 is

(A) 0 (B) 2(a + d) (C) 1 + b (D) $2a - \frac{2d}{c}$


- **3.** If |OA'| = |AA'| = 1, then the values of 'm' for which $(g(x))^2 + mg(x) + 4 = 0$ has two real roots which are distinct (A) (0, 4) (B) (4, ∞) (C) (4, 5) (D) (5, ∞)
- 4. If $\alpha \& \beta$ are the roots of the quadratic equation $ax^2 + bx + c = 0$, then the quadratic equation, $ax^2 - bx (x - 1) + c (x - 1)^2 = 0$ has roots :

(A)
$$\frac{\alpha}{1-\alpha}$$
, $\frac{\beta}{1-\beta}$ (B) $\alpha - 1$, $\beta - 1$ (C) $\frac{\alpha}{\alpha+1}$, $\frac{\beta}{\beta+1}$ (D) $\frac{1-\alpha}{\alpha}$, $\frac{1-\beta}{\beta}$

- 5. If α , β , γ are the roots of the equation $x^3 px^2 + qx r = 0$, then the value of $\sum \alpha^2 \beta$ is equal to (A) pq + 3r (B) pq + r (C) pq 3r (D) q²/r
- **6.** If α , β , γ are the roots of the equation $x^3 px^2 + qx r = 0$, then the value of

$$\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}\right) \text{ is :}$$
(A) $\frac{p^2 - 2qr}{r^2}$ (B) $\frac{q^2 - 2pr}{r^2}$ (C) $\frac{r^2 - 2pq}{r^2}$ (D) none of these

7. Find all values of 'k' for which the inequality (x - 3k)(x - k - 3) < 0 is true " $x \in [1, 3]$.

